The Sizes of Things

Herbert A. Simon Carnegie-Mellon University

On Figure 1 are drawn four lines. The lowest one, a simple straight line in-
clined at a 45 ° angle, serves. merely for purposes of comparison in describing
the three slightly wavy lines. The three wavy lines—and particularly the two
just above the straight line—depict $ome curious facts about the world. Whether
they are significant facts as well as curious facts is a question we examine.
The lower broken line relates, on a logarithmic scale,! the 1980 populations
of the 20 largest cities in the United States to the ranks by size of the cities,

I"The common logarithm is probably familidr as a tricky device for muitiplying numbers through
a process of addition. Another way of looking at the logarithm is that taking the logarithm com-
presses the scale of numbers so as to create a new scale; one that miakes muitiplying the old number
.by 10 equivalent to adding one unit to the new number. For example, the logarithm of 10 is 1,
of 100 is 2, of 1,000 is 3, and so on. The logarithm of 2,000 is about 3.300 and that of 20,000
is about 4.300. If a city has a population of 5,000,000, then the loganthm of its population is
about 6.70. The compression achieved by a logarithm scale increases as the numbers do.
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Figure 1 Logarithm of size piotted against logarithm of rank for frequencies of words
and for populations of cities.

arranged with New York, ranked 1, down to Cincinnati, ranked 20. The popula-
tion of each metropolitan statistical area was used, not just that within the city
limits. The horizontal axis shows, also on a logarithmic scale, the city ranks,
from 1 through 20; on the vertical scale are shown the corresponding logarithms
of populations in millions of persons. Ignoring the two largest cities (New York
and Los Angeles), we can see that the rest of the line is nearly straight and in-
clined nearly at a 45° angle, parallel to the straight line below. Straightening
out the left end of the curve would involve raising New York from about 20 .
million people to about 30 million and Los Angeles to 15 million (a heavy price
to pay for a straight line), but the remaining 18 cities would rcquire very little
adjustment—generally less than 10% up or down.

The solid line, just above and very close to the line for cities, shows (again
on logarithmic scales) the number of occurrences of each of the 20 words most
frequently used in James Joyce's Ulysses, when the words are arranged in
descending order of frequency of occurrence. For this line, the ordinates show
the frequencies of occurrences in thousands. The most frequent word in Ulysses,
the, occurred 14,887 times; the twentieth most frequent, all, occurred 1,311
times. As with the city sizes, the word frequencies lie almost on a straight line,
although straightening the line would again require adjustment of the first few
words; the would ‘have to be increased to about 26,000 occurrences, of to
13,000, and and to about 8,700. The remaining 17 frequencies are extremely
close to a straight line inclined at 45°.

Observe that in these distributions the product of the rank of each item by
its size remains constant over the whole scale. If the first item (rank 1) has size
1,000,000, the tenth item will have size about 100,000 (10 x 100,000 =
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1,000,000), and the twentieth item will have size 50,000 (20 x 50,000 =
1,000,000). The task before us is to explain why these regularities hold, why
the product of number and rank in these distributions is almost constant, and—
even more mysterious—why the size distribution of U.S. cities should obey the
same law as the frequency distribution of words in a stylistically unusual book
such as Ulysses (or in any book for that matter). Let’s begin with the words.

‘WORDS: COMMON AND RARE

In the late nineteenth century, several linguists (among them de Saussurre in
France) discovered the surprising rank-frequency regularity in the relative con-
tributions of different words to any body of text. Obviously, certain words, such

as of; will occur rather frequently in almost any English text, while other words,

_such as conundrum, will occur infrequently or not at all. The frequency of
any specific word may vary widely from one text to another.

Whenever you arrange the various words occurring in a particular text in
the order of their frequency of occurrence—first the word that occurs most
often in that text, then the word that occurs next most often, and so on—the
regularity depicted in Figure 1 will reappear. The twentieth word on your list
will occur about half as often as the tenth word.2 If you enjoy this kind of
numerology, you will find equally startling regularities at the other end of the
distribution among the rare words.

About one-half of the total number of different words in the text occur ex-
actly once each, about one-sixth occur exactly twice each, and about one-
twelfth occur three times each (see Table 1). The ratio 1/[n(n + 1)] gives the
fraction of all the distinct words in the text that occur exactly # times each.
This regularity in frequency of occurrence of the rare words is, of course, the
.same rank-size law we have been observing at the other end of the distribu-
tion, for the rank of a word is simply the cumulated number of different words
that have occurred as frequently as it has, or more frequently. Suppose then,
as the rank-size rule requires, that KAz + 1) words occur # + 1 or more times
each, and K/n words occur n or more times each. Then the number of words
occurring exactly » times will be K/n - K/{(n + 1) = K/[n(n + 1)].

The rank-size law, often called Zipf’s law in honor of a U.S. linguist who
wrote a great deal about it, sholds for just about all of the texts whose
vocabularies have been counted, in a great. range of languages, not excluding
native American languages. But while it holds for Ulysses, it fails for Joyce’s
Finnegans Wake (possibly because of the freedom Joyce exercises in creating
all sorts of word fragments and variants of dictionary words). A count of
ideograms in Chinese texts seemed to show that the law failed; but a recent
frequency count of Chinese words (each word may consist of one, two, or more
ideograms) shows that it fits the Chinese language just as well as it fits others.

2In most cases, the first two or three frequencies are substantially lower than the rule predicts,
as in Figure 1.
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Table 1 The number of rarely occurring words
in James Joyce’s Ulysses

Number of Number of Words
Occurrences (n) Actual Predicted*
1 16,432 14,949
2 4,776 4,983
3 2,194 2,491
4 1,285 1,495
5 906 997
6 637 712
7 483 534
8 371 415
9 298 332
10 222 272

*Predicted number = K/[n(n + 1)}; K= 29,899, the total
number of different words in Ulysses.

Why does this regularity hold? Why should the balance between frequent
and rare words be exactly the same in a daily newspaper as in Joyce’s Ulysses,

~ the same in German books as in English books, or the same in most (not all)

séhizophrenic speech as in normal speech?

Several answers have been proposed, one of which is typical of the explana-
tions that are provided by probability theory. Probability theory often explains
the way things are arranged on average by conceding its inability to explain
them in exact detail. To explain the laws of gasses it avoids tracing the path
of each molecule.

To explain the word distribution, we make some assumptions that might be
thought outrageous if applied in detail, but that might be plausible if only ap-
plied in the aggregate. We assume that a writer generates a text by drawing from
the whole vast store of his or her memory, and by drawing from the even vaster
store of the literature of the language. The former of these processes we might
call association, the latter imitation. Specifically, we assume that the chance
of any given word being chosen next is proportional to the number of times
the word has previously been stored away—in memory or in the literature.
Remember, these assumptions are intended to apply only in the large. To ac-
cept them, we need not believe that Shakespeare wrote sonnets by spinning
a roulette wheel any more than we believe the individual molecules of a gas
chart their courses by shaking dice.

If we accept the assumptions, then it becomes a straightforward mathematical
matter but one beyond the scope of this essay to derive the probability distribu-
tion they imply. The derivation yields what is known as the Yule distribution.
In the upper range, among frequently used words, the Yule distribution agrees
with the rank-size law of Zipf; in the lower range, among rarely used words,
it gives precisely the observed fractions 1/[n(n + 1)]. .

Now we see why the same distribution can fit texts of diverse kinds drawn
from the literatures of many languages. The same distribution can fit because
it does not depend on any very specific properties of the process that generated
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the text. It depends only on the generator being, in a probabilistic sense, an
associative and imitative process. We might even suspect that substantial depar-
tures from exact proportionality in association and imitation would not greatly
change the character of the distribution. To the extent that the consequences
of changing the assumptions have been explored, mathematically and by com-
puter simulation, the distribution has indeed proved robust. We can give
Shakespeare and Joyce a great deal of latitude in the way they write without
altering visibly the gross size-rank relation of their vocabularies, but as Fin-
negans Wake shows, we can'’t give them infinite latitude.

MEGALOPOLIS AND METROPOLIS

Having stripped away some of the mystery of the vocabularies of literary texts,
we are perhaps prepared to tackle the corresponding regularity in U.S. city sizes.
We have seen (Figure 1) that the city populations obey the same rank-size law,
to a quite good approximation.? If two cities have ranks J and &, respectively,
in the list, their populations’ ratio will approximate k.

The regularity is not just a happenstance of the 1980 Census. It holds quite
well for all the Censuses back to 1780. It does not hold, however, for cities
in arbitrarily defined geographical regions of the world, which are not relatively
self-contained economic units. It does not hold, for example, for Austria, or
for individual Central American countries, or for Australia. Nor does it hold
if we put the cities of the whole world together (see the uppermost curve in
Figure 1). In that case, the distribution is still relatively smooth and regular,

but population does not drop off with rank as fast as Zipf’'s law demands. The

distribution is flatter, and the largest metropolises are “‘too small.”’ though, I
hasten to add, this phrase should not be interpreted normatively.

(The definition of size for the world’s cities differs from that of the U.S. cities
and so the actual magnitudes are not quite comparable. The lists from which
they are compiled differ in their year, 1975 vs. 1980, and the notion of
metropolitan area may not have been used in deciding the size of 2 member
of the list of world cities.) '

In the case of city sizes, then, we must be prepared to explain fwo things:
why Zipf’s law has held for more than two centuries for the cities of the United
States, and why it doesn’t hold for. many other aggregates of cities. Let’s start
with the former question and ask what the analogues might be to the associa-
tion and imitation processes that explained the word distributions. More pre-
cisely, let’s ask what processes would lead cities to grow at rates proportional,
on average, to the sizes already achieved (sometimes called Gibrat’s Drinciple);
for that is the main assumption the mathematical derivation requires.

Cities grow by the net balance of births over deaths, and they grow by the
net balance of inward over outward migration. With respect to births and deaths,

3We can take either the populations of cities as defined by their corporate boundaries, or popula-
tions within metropolitan areas as defined by the U.S. Census. The regularity shows up about as
well in either case—perhaps it is a little more satisfactory if we use metropolitan statistical areas.
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we need assume only that, on average, birth and death rates are uncorrelated
with city size. With respect to migration, we assume that migration outward
is proportional, on average, to city size (that is, that per capita ratesare indepen-
dent of size), and migration inward (from rural areas, from other cities, or from
abroad) is also propoitional to city size. The last assumption means that the
cities in a given size group form a “‘target’’ for migration, which is larger, in
total, as the total population already living in the cities of that group is larger.
(I leave it to the réader to consider the reasons why this niight be a plausible
assumption, at least as an approximation.)

If we make these assumptions, we are again led by the mathematics of the
matter to Zipf's rank-size law. But now it is instructive to ask: Under what cir-
cumstances would we expect a collection of cities to fit the assumptions? The
answer is.that the cities should form a ‘‘natural” region within which there is
high and free mobility of popylation and industry, and which is not an arbitrary
slice of a still larger region. The United States fits these requirements quite well,
while an drea playing a specialized role in a larger economic éntity might not
fit at all (for example, Austria after the dissolution of the _Empire, or a country
specializing in agribultuml exports and having a single large seaport).

If we put together a large number of distributions, each separately obeying
the rank-size law, we get a new distribution of the same shape, simply displaced
upward on the graph, but with the top few omitted. We would expect the totality
of the world’s cities to fit the rank-size distribution, except for a deficiency
of extremely large metropolises at the very top, and so it does. If we take the
published figures at their face value (the definitional problems are severe, and
the census counts of varying accuracy), there are somewhat more than 50 ur-
ban aggregations in the world having more than 2 million people each. Zipf’s
law would then call for a New York or a Tokyo of 100 million people, instead
of the mere 20 million who now inhabit each of those cities. But the deficiency
of cities at the very top (mostly the top 10) is soon largely made up by the
numerous cities of over 5 million population each. Already, the tenth city on
the list, Paris, has a pdpulation of 9.2 million, only 10% fewer than the number
deminded by Zipf’s law.

The sizes of cities are of obvious importance to the people who live in them,
but it is not obvious what practical conclusions we are to draw from the actual
size distribution. One possible conclusion is that the distribution isn’t going to be
easy to change without strong governmental or economic controls over places of
residence and work. Or, to put the mattér more palatably—because we generally
wish to avoid such controls—the mathematical analysis that discloses the forces
governing the phenomena teaches us that any attempt to alter the phenomena
requires us to deal with those forces with sophistication and intelligence.

BIG AND LITTLE BUSINESS

Economists have generally been more interested in the sizes of business firms
than they have been in the sizes of cities. Concentration of industry in the hands
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of a few large firms is generally thought to be inimical to competition and is
generally also supposed to have proceeded at a rapid rate in the United States
during the present century. .

It has long been known that business firms in the United States, England,
and other countries have size distributions that resemble Zipf's rank-size law,
except that size decredses less rapidly with rank than in the situations described
previously (that is, the ratio of the largest firm to the tenth largést is generally
less than ten to onef). The slower the decrease in size with increase in rank,
the less concentrated is business in the largest firms.

Economists have been puzzled by the fact that the rate of decrease in size
with rank, which is one way of measuring industrial concentration, appears
to be about the same for large U.S. manufacturing firms at the present time as
it was 35 years ago or even at the turn of the century. Even during periods of
frequent mergers, the degree of industrial concentration, as measured by the
rank-size relation, has changed only slowly.

From our previous analyses, we should be ready to solve the puzzle. Indeed,
it can be shown mathematically that under appropriate assumptions about the
firts that disappear by merger, and those that grow by merger, mergers will
have no effect on concentration. Moreover, the assumptions required for this
mathematical derivation fit the United States statistical data on mergers fairly
well. In analogy to the processes for words and cities, we can guess what thos
assumptions—and the data that support them—are like: ‘

* The probability of a firm “‘dying”” by merger should be approximately in-
dependent of its size. B

* The average assets acquired by surviving firms through mergers should be
roughly proportional to the size they have already attained.

And these are indeed not very far from the truth.

Thus a line of scientific inquiry that began with a linguistic puzzle over word
frequencies leads to an explanation of a paradox about industrial concentra-
tion in the United States. That explanation opens new lines of research for
understanding business growth and arriving at public policy for the maintenance
of business conipetition. _ '

Our fascindtion with rank-size distributions need not stop with the three
examples examined here. We may expect the Zipf distribution to show up in
other places as well, and each new Occurrence challenges us to formulate plau-
sible (and testable) assumptions from which the rank-size law can be derived and

‘Let m and 7n be the ranks of two members of a rank-size distribution, and let S,n and Sy, be their
respective sizes. Then the rank-size law, in this generalized form, requires Sp/S,, = (n/m)¥, where
the exponent & is a proper fraction. When % approaches unity as a limit, we get the special case
of the Zipf distribution. The general distribution is usually called by economists the Pareto distribu-
tion. If we graph the logarithmic distribution, taking logarithms of both ranks and sizes, we again
obtain a straight line with 2 slope equal to the fraction . The steeper this straight line (the larger
k), the larger are the first-ranking firms compared with the firms further down the list (that is,
the larger is &, the greater the concentration).
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the occurence explained. I will leave a final example as an exercise for the reader.
List the authors who have. contributed to a scientific journal over a span of 20
years, or whose naines have appeared in a comprehensive bibliography, such
as Chemical Abstracts. Note the number of appearances for each author, and
rank the authors by that number. Then about one-half of ali the authors will
have appeared exictly once, one-sixth will have appeared twice, and so on;
the data will not stray far from the Yule distribution. What are the ways of

-authors that can provide a naturalistic explanation for that fact?

PROBLEMS

1. From Figure 1, what foughly is the population of Philadelphia, the fifth
largest city in the United States?

2. Consider Table 1. :
a. 483 distinct words appear 7 times in the text of Ulysses. How was
the predicted value of 534 computed? : ‘
b. Suppose the predicted number of words occurring z times is 164.
Approximately what is »? (Hint: You will have to use the quadratic
formula from high school algebra.)

3. What does the author mean by association? By imitation?

4. How can the same distribution fit thie population of U.S. cities and the fre-
quency of words in a text? '

5. What is Gibrat’s principle? How does it relate to Zipf’s law? To the sizes
of U.S. cities?

6. State in words the mathematical assumptions that lead to the Yule distribu-
tion, first in the case of literary texts, then in the case of city sizes.

7. Can you think of a reason why the few largest cities in the United States
might not satisfy the rank-size law?

8. a. How are the Zipf and Pareto distributions related?
b. In a logarithmic graph of the Pareto distribution, what is k?

9. Suppose IBM’s ind Xerox’s _sé_lcs rank first and fourth, respectively, Xerox’s
sales are $1 billion, and business-firm sales obey a Pareto distribution with
k = 1/2. What would IBM’s sales be?
10. If R, is the rank of a thing of size 7, state Zipf's law. _
11. Assume the fourth largest city has a population.of 10 million. What rank-
ing would you expecta city of 2% million to hold, accordirg to Zipf's law?

12. The author states that the number of different words occuring exactly 7
times in a given text equals K/[n(n + 1)]. What is K? (Hint: See Table 1.)
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13. Refer to the exercise outlined in the final paragraph. What two assump-
tions would you postulate for this distribution? (Hint: Use the assumptions
for mergers or city sizes as a close guide.)
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